
扫一扫,立即下载
闂佽瀛╅鏍窗閹烘纾婚柟鍓х帛閻撴洘绻涢崱妯哄闁诲繘浜堕弻宥堫檨闁告挻鐟╅獮蹇涘箣閻樻剚娼熼梺璺ㄥ櫐閹凤拷北京正保医教科技有限公司
闂傚倷绀侀崥瀣i幒妤嬬稏濠㈣埖鍔栭崐璺侯熆閼搁潧濮堥柛瀣儔閺屾盯顢曢妶鍛€鹃梺鍦厴娴滃爼寮婚妸銉㈡闁惧浚鍋勯锟�8.7.1
闂備浇顕уù鐑藉箠閹惧嚢鍥敍濮樿鲸娈惧┑鐘诧工閻楀﹪宕戠€n喗鐓曟い鎰╁€曢弸鎴︽煙閻戞垝鎲鹃柡灞诲妼閳藉鎼归銏╀紦8.7.1
闂備礁婀遍崢褔鎮洪妸銉綎濠电姵鑹鹃弸渚€鏌曢崼婵囧櫝婵℃彃鐗嗛…璺ㄦ崉閻氭潙浼愰梺瑙勬偠閸婃繈寮婚埄鍐ㄧ窞濠电姴鍊瑰▓璇测攽閿涘嫬浜炬俊鐐扮矙瀵偄顓兼径瀣闂佽法鍣﹂幏锟�闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柛鎰嚋閼板潡鏌涘☉娆愮稇缂佺嫏鍥ㄧ厱闁逛即娼ч弸鐔搞亜鎼搭垱瀚� >
APP:闂傚倸鍊搁崐鎼佸箠韫囨稑绀夋俊銈呮嫅缂嶆牠鏌涢埄鍐槈缂備讲鏅犻幃褰掑箒閹烘垵顬嬮梺纭呭Г缁捇寮婚妸銉㈡闁惧浚鍋勯锟�闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柛鎰嚋閼板潡鏌涘☉娆愮稇缂備讲鏅犻幃褰掑箒閹烘垵顬嬮梺瑙勬灮閹凤拷 >
官方微信med66_yaoshi
有关有机化学知识点,以下是小编整理的“有机化学的非共价键键合”,具体内容如下,请考生查看!
可逆过程,其键合形式有:范德华力、氢键、疏水键、静电引力、电荷转移复合物、偶极相互作用力。
(1)氢键:氢键的生成是由于药物分子中含有孤对电子的O、N、S等原子和与非碳的杂原子以共价键相连的氢原子之间形成的弱化学键。
①氢键是有机化学中最常见的一种非共价作用形式,
②也是药物和生物大分子作用的最基本化学键合形式。
③如磺胺类利尿药通过氢键和碳酸酐酶结合,其结合位点与碳酸和碳酸酐酶的结合位点相同。
另外药物自身还可以形成分子间氢键和分子内氢键,如水杨酸甲酯,由于形成分子内氢键,用于肌肉疼痛的治疗;而对羟基苯甲酸甲酯的酚羟基则无法形成这种分子内氢键,对细菌生长具有抑制作用。
(2)离子-偶极和偶极-偶极相互作用:在药物和受体分子中,当碳原子和其他电负性较大的原子,如N、0、S、卤素等成键时,由于电负性较大原子的诱导作用使得电荷分布不均匀,导致电子的不对称分布,产生电偶极。离子-偶极,偶极-偶极相互作用通常见于羰基类化合物,如乙酰胆碱和受体的作用。
(3)电荷转移复合物:电荷转移复合物发生在缺电子的电子接受体和富电子的电子供给体之间,当这两种分子相结合时,电子将在电子供给体和电子接受体之间转移,形成电荷转移复合物。例如:抗疟药氯喹可以插入到疟原虫的DNA碱基对之间形成电荷转移复合物
(4)疏水性相互作用:当药物结构中非极性链部分和生物大分子中非极性链部分相互作用时,由于相互之间亲脂能力比较相近,结合比较紧密,导致两者周围围绕的、能量较高的水分子层破坏,形成无序状态的水分子结构,导致体系的能量降低。
(5)范德华引力:范德华引力来自于分子间暂时偶极产生的相互吸引。范德华引力是非共价键键合方式中最弱的一种。随着分子间的距离缩短而加强。
以上即为“有机化学的非共价键键合”的相关内容,更多请关注医学教育网!希望对你有帮助!